MOTIVES IN MAY EXERCISES

Triangulated categories

Let \mathcal{A} be an abelian category. You may not use roofs in the first three exercises, as (some of) these results are used to prove that roofs work in $D(\mathcal{A})$.

Exercise 18. Suppose $f: A \to B$ is a map of complexes in Kom(\mathcal{A}). Construct maps $\alpha_f: B \to \operatorname{Cyl}(f)$ and $\beta_f: \operatorname{Cyl}(f) \to B$ in Kom(\mathcal{A}) that give a homotopy equivalence $B \cong \operatorname{Cyl}(f)$. Moreover, show that α_f and β_f are inverses in $D(\mathcal{A})$ (without invoking the fact that the map to the derived category factors through the homotopy category).

Exercise 19. Suppose $f: A \to B$ is a map of complexes in Kom(\mathcal{A}). Show that we have a commuting diagram

with exact rows.

Exercise 20. Suppose $f, g: A \to B$ are homotopic.

(a) Using a homotopy h between f and g, construct a map $H: \operatorname{Cyl}(f) \to \operatorname{Cyl}(g)$ so that

commutes, where \bar{f}, \bar{g} are as in the previous exercise.

- (b) Show that $\beta_g \circ H \circ \alpha_f = \mathrm{id}_B$.
- (c) Show that $\beta_g \circ \bar{g} = g$.
- (d) Show that $\overline{f} = \alpha_f \circ f$ in $D(\mathcal{A})$.
- (e) Conclude that f = g in $D(\mathcal{A})$.

Exercise 21. Recall that we defined $\operatorname{Ext}^{i}(A, B) := \operatorname{Hom}_{D(\mathcal{A})}(\widetilde{A}, \widetilde{B}[i]))$. Give a bijection between elements of $\operatorname{Ext}^{1}(A, B)$ and extensions of A by B, i.e. equivalence classes of exact sequences $0 \to B \to C \to A \to 0$.

Exercise 22. Suppose \mathcal{D} is a triangulated category. Show that for any object $U \in \mathcal{D}$, the functor Hom(U, -) is *cohomological* in the sense that for an exact triangle $A \to B \to C \to A[1]$, the sequence

$$\cdots \to \operatorname{Hom}(U, C[-1]) \to \operatorname{Hom}(U, A) \to \operatorname{Hom}(U, B) \to \operatorname{Hom}(U, C) \to \operatorname{Hom}(U, A[1]) \to \cdots$$

is exact.