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0. Advertisement
Jake, April 11.

This section consists of notes for a talk given at the OSU TAGGS (Topology, geometry, and
Applications Graduate Student Seminar).1 The purpose was to advertise Motives in May to
an audience with a background in topology, differential geometry, and analysis. Alas, only a
small piece of what I would have liked to say fit in the allotted 50 minutes.

0.1. Cohomology from different perspectives

Let X be a topological space. One attaches to X various cohomology groups, for example,
singular cohomology with coefficients in a ring B,

H i
sing(X; B),

whose elements we are going to view (by the universal coefficient theorem) as linear functions
on the B-module of singular homology classes.

Now assume X is a smooth manifold. In this setting, we have another notion of cohomology,
the de Rham cohomology

H i
dR(X),

which is defined to be the cohomology of the de Rham complex

0 → Ω0(X) d−→ Ω1(X) d−→ · · · ,

in which Ωi(X) is the R-vector space of C∞ differential forms on X and d is the exterior
derivative. This is of a very different flavor than the singular cohomology, but nonetheless
Stokes’s theorem tells us that integration of a form over a homology class defines an R-linear
map

(0.1.1) H i
dR(X) H i

sing(X;Z) ⊗Z R

[ω] ([α] 7→
∫

α ω)

(Here, ω is a C∞ i-form on X, α is a cycle on X, and [−] denotes cohomology/homology
class.) The theorem of de Rham is that the map (0.1.1) is an isomorphism. Moreover, it is
natural in X, i.e. is an isomorphism between the two functors

H i
dR and H i

sing(−;Z) ⊗Z R

Date: 2025.
1https://sites.google.com/view/osu-taggs/home
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from the category of smooth manifolds to the category of R-vector spaces. In this sense,
despite being defined in a very different way, H i

dR is not a “new mathematical object”. Instead,
it provides us with new perspectives, new ways to compute cohomology, and new connections
between different branches of mathematics, all of which, of course, are extremely valuable.

Now assume that our smooth manifold X is compact, without boundary, and equipped
with a Riemannian metric and an orientation. Hodge came up with the correct generalization
of the Laplacian operator ∆ in this setting; it acts on the groups Ωi(X). Any differential
form which is killed ∆ is also closed (i.e. killed by d), so we get a map

(0.1.2) Ωi(X)∆=0 → H i
dR(X).

A major theorem of Hodge2 is that (0.1.2) is an isomorphism. That is, every de Rham
cohomology class on X has a unique representative ω satisfying ∆ω = 0; such a form ω is
called harmonic. This opens up the possibility of studying the topology of X via analysis
and differential equations.

0.2. The Hodge decomposition

Let X be a complex manifold. A C-valued C∞ differential form ω on X is called a (p, q)-form
if for any point x ∈ X, there is a neighborhood U of x with holomorphic coordinate functions
(z1, . . . , zp, w1, . . . , wq) such that

ω|U = f dz1 ∧ · · · ∧ dzp ∧ dw1 ∧ · · · ∧ dwq

for some C∞ function f : U → C. It is not hard to see that any C-valued C∞ differential
form may be uniquely decomposed into a sum of (p, q)-forms (for varying (p, q)). That is, we
have a decomposition

(0.2.1) Ωi(X) ⊗R C =
⊕

p+q=i

Ωp,q(X).

Assume now and for the rest of this talk that X is compact and admits a Kähler metric.3
For example, if X can be embedded into complex projective space Pn(C), then X admits a
Kähler metric. In this case, the (p, q)-components of a harmonic form are again harmonic, so
the decomposition (0.2.1) descends, by Hodge’s theorem, to a decomposition

H i
dR(X) ⊗R C =

⊕
p+q=i

Hp,q(X).

This is the Hodge decomposition. It evidently satisfies Hodge symmetry:

Hp,q(X) = Hq,p(X).

We call hp,q(X) := dimC(Hp,q(X)) the (p, q)-Hodge number of X.
The key thing to note here is that, in contrast to everything described in the previous

sections, the complex de Rham cohomology of a compact Kähler manifold carries a new

2the proof of which had some gaps which were filled in by Kodaira and Weyl
3that is, a Hermitian metric—the complex-analytic analogue of a Riemannian metric—satisfying an extra

technical condition
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structure that was invisible before: the sequence of Betti numbers are refined to a grid of
Hodge numbers, which are reflecting the complex geometry, rather than topology, of X.

To see that the Hodge numbers really give us something new, a simple consequence of
Hodge symmetry is that the odd Betti numbers b2i+1 of a compact Kähler manifold must be
even. So, for example, we immediately see that S1 × S3 cannot be given the structure of a
Kähler manifold.

0.3. Hodge structures

We can produce an even “better” invariant than the Hodge numbers by combining the Hodge
decomposition with de Rham’s theorem. This leads to the following definition.

0.3.1. Definition. Let B ⊆ R be a ring (typically Z, Q, or R). A (pure) B-Hodge structure is
a finitely generated B-module V together with a “Hodge” decomposition

V ⊗B C =
⊕

p,q∈Z
V p,q

satisfying V p,q = V q,p for all p, q.4 These form a category B-HS, in which morphisms are
homomorphisms of B-modules which respect the Hodge decompositions after tensoring with
C. We say that V is of weight i if V p,q = 0 whenever p + q ̸= i.

Explicitly, we get a functor from the category of compact Kähler manifolds to B-HS which
sends X to the B-module H i

sing(X; B) together with its Hodge structure induced by de
Rham’s theorem and the Hodge decomposition. Intuitively, the B-Hodge structure describes
how the B-submodule H i

sing(X; B) ⊆ H i
dR(X) ⊗R C is “positioned relative to” the Hodge

decomposition.
At a first glance, it is not at all obvious what we have gained (if anything) by making

this definition. Nonetheless, the Hodge structure on H i
sing(X; B) turns out to be extremely

powerful, as the following example illustrates.

0.3.2. Example. Recall that every 1-dimensional complex manifold, i.e. Riemann surface,
which is compact and of genus 1 is isomorphic to C/Λ for some lattice Λ. Moreover, C/Λ
and C/Λ′ are complex-diffeomorphic if and only if Λ′ = zΛ for some z ∈ C. Of course, the
Betti numbers of C/Λ are (1, 2, 1), so its Hodge numbers are forced to be

h1,1 1
h0,1 h1,0 = 1 1

h0,0 1
by Hodge symmetry. So the Hodge decomposition provides no information in this case.

On the other hand, one has an isomorphism of Z-Hodge structures H1
sing(C/Λ,Z) ∼= Λ,

where Λ is given the following Hodge structure:

Λ ⊗Z C = (Λ ⊗Z R) ⊗R C = C ⊗R C = C ⊕ C =: Λ0,1 ⊕ Λ1,0.

4Since B ⊆ R, we have V ⊗B C = (V ⊗B R) ⊗R C, each element of which maybe written uniquely as
v ⊗ 1 + w ⊗ i for some v, w ∈ V ⊗B R; this allows us to define complex conjugation on V ⊗B C.
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It is not difficult to check that a Z-module homomorphism Λ → Λ′ of lattices in C respects
Hodge decompositions (if and) only if becomes C-linear after tensoring with R, i.e. is
multiplication by some z ∈ C. Consequently, the Hodge structure on H1

sing(C/Λ,Z) is a
complete invariant of a compact Riemann surface of genus 1. In fact, the category of complex
tori is equivalent to the category of free rank-2 Z-Hodge structures with h0,1 = h1,0 = 1.

It is remarkable that a Hodge structure—just a bit of linear-algebraic data—is able to capture
so much geometric information!

0.4. An enriched cohomology theory

For the rest of this talk, let us abbreviate H i(X) for H i
sing(X; B) endowed with its B-Hodge

structure. Then H i is an “enriched cohomology theory” in the sense that the B-Hodge
structure compatible with the usual axioms of cohomology:

• If Y is another compact Kähler manifold, Künneth’s theorem states that the natural
map

(0.4.1) H∗(X) ⊗B H∗(Y ) → H∗(X × Y )

is an isomorphism. This is true at the level of B-Hodge structures: The category B-HS
has tensor product, and it makes (0.4.1) into an isomorphism of B-Hodge structures.

• The Poincaré duality pairing

(0.4.2) H i(X) ⊗B H2d−i(X) ⌣−→ H2d(X)

is again a morphism in B-HS; here d is the (complex) dimension of X.
Note that there is just one possibility for the Hodge structure H2d(X): We have H2d(X) ∼=
B(−d), where B(−d) is the unique B-Hodge structure which is free of rank 1 and of weight
2d. That is, its underlying B-module is just B, and B(−d)d,d = C (= B ⊗B C). Thus (0.4.2)
induces an isomorphism H i(X)(d) ∼= H2d−i(X)∨ of B-Hodge structures, where for a B-Hodge
structure V we write V (d) := V ⊗B B(d) and V ∨ for its dual as a B-Hodge structure. One
calls V (d) the dth “Tate twist” of V ; its underlying B-module is just V , but the Hodge
decomposition has been shifted in weight.

0.5. The Hodge conjecture

Each (possibly singular) closed complex submanifold Z of X gives rise to a class [Z] ∈ H2i(X),
where i is the (complex) codimension of Z. Such a class will always live in H i,i(X), essentially
because it arises from H0(Z), whose Hodge decomposition only has an (0, 0)-piece.

0.5.1. Conjecture. (The “Hodge conjecture”.) Assume X is a smooth projective complex
variety, and take B = Q. Then the Q-vector space H2i(X) ∩ H i,i(X) is spanned by classes of
the form [Z] for closed subvarieties Z of X of codimension i.

In the above conjecture, we are taking the intersection of the Q-vector space H2i(X) with
the C-vector space H i,i(X) inside the C-vector space HdR(X) ⊗R C. It should be noted that
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the analogous statement is known to be false if we let X be an arbitrary compact Kähler
manifold or if we replace Q by Z.

The point of the rest of this section is to give a “motivic interpretation” of the Hodge
conjecture.

The starting point is the observation that the category Q-HS has an internal hom, because
it has tensors and duals:

Hom(V, W ) := V ∨ ⊗Q W.

One can recover the usual hom as follows:

HomQ-HS(V, W ) = Hom(V, W ) ∩ Hom(V, W )0,0.

Again, we are here intersecting the Q-vector space Hom(V, W ) with the C-vector space
Hom(V, W )0,0 inside Hom(V, W ) ⊗Q C.5 Therefore, given to smooth projective complex
varieties X and Y of dimensions d and e, respectively, we have

He,e(X × Y ) = (H∗(X) ⊗Q H∗(Y ))e,e

= (H∗(X) ⊗Q H∗(Y )(e))0,0

= (H∗(X) ⊗Q H∗(Y )∨)0,0

= Hom(H∗(Y ), H∗(X))0,0,

the first equality being the “enriched” Künneth isomorphism, and the third being the “enriched”
Poincaré duality. So the Hodge conjecture for X × Y says that HomQ-HS(H∗(Y ), H∗(X)) is
spanned by classes of the form [Z] for closed subvarieties Z of X × Y of codimension e. Of
course, the graph of a morphism f : X → Y is such a subvariety, and indeed gives rise to a
pullback map f ∗ : H∗(Y ) → H∗(X) which is a morphism in Q-HS.

Now let us be a bit vague. The Hodge conjecture suggests that we should consider all
closed codimension-e subvarieties of X × Y , and even Q-linear combinations of such, to be
“generalized morphisms” from X to Y . Suppose we have a category CorrC whose objects are
smooth projective complex manifolds and whose morphisms are “generalized morphisms” in
the sense of the previous sentence. Then the Hodge conjecture says that the functor

H∗ : Corrop
C → Q-HS

is full. Moreover, by imposing an appropriate equivalence relation ∼ on CorrC, we obtain,
under the Hodge conjecture, a fully faithful functor

H∗ : (CorrC/∼)op → Q-HS,

where we have quotiented the hom sets of CorrC by ∼. In other words: The Hodge conjecture
says that the data of the Q-Hodge structure H∗(X) is precisely the data of X itself, viewed as
an object in the category CorrC/∼! Moreover, the category CorrC is defined in an entirely

5It should be noted that HomQ-HS(V, W ) = HomQ-HS(Q, Hom(V, W )), where Q means Q(0) (the unit
object for the tensor product in Q-HS).
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geometric way, and although ∼ is cohomological in nature, the Hodge conjecture implies that
it too can be described in geometric terms (i.e. without cohomology).

0.6. Motives: A look forward

The “motivic interpretation” of the Hodge conjecture in the previous paragraph raises some
questions (aside from how to make everything precise).

• It suggests that we should view the functor

SmProjop
C → (CorrC/∼)op

as a sort of enriched cohomology theory for smooth projective complex varieties.
However, the category (CorrC/∼)op is a rather deficient receptacle for a cohomology
theory: Although its hom sets are Q-vector spaces, it is very far from being Abelian,
and also does not have duals. Can we “improve” it to have these good properties (and
more)? For example, can we somehow “adjoin kernels and cokernels”?

• How do we carry out these ideas for smooth projective varieties over an arbitrary field?
These are basic questions in the theory of pure motives, and have been to a large extent
answered, though important (and foundational) open questions remain. Although the
discussion above does not make evident that it would have any useful applications, a complete
theory of pure motives would have far-reaching consequences in geometry, arithmetic, and
even the theory of transcendental numbers.

The philosophy of mixed motives is that pure motives should be a special case of a theory
that deals with all varieties, not just smooth projective ones. This theory remains much more
shrouded in mystery, and attempts at developing it take on a very different flavor than the
theory of pure motives.
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1. Chow groups
Jake, April 15.

1.1. Cycles

From a first pass, Chow groups can be thought of as providing invariants of a scheme which
describe its “shape” (in some sort of way that takes into account its algebraic structure).
Recall that, in algebraic topology, the standard approach is to study certain subspaces
of a topological space up to certain equivalences, e.g. loops up to homotopy, or simplices
(more precisely, “cycles”—linear combinations of simplices) up to homology. We’ll try to do
something similar, which will end up being sort of like “cycles up to homotopy”.

It turns out that the algebraic nature of schemes provides us with a very natural candidate
for which “subspaces” to consider. For a scheme X, let |X| denote its underlying (Zariski)
topological space.

1.1.1. Exercise. If X is any scheme whatsoever, show that the association x 7→ {x} defines a
bijection

|X| ∼→ {irreducible closed subsets of |X|}.

Also, show that every closed subset of |X| is the underlying set of a unique reduced closed
subscheme of X.

We are going to pass back and forth between these equivalent objects, hopefully without
causing confusion. Perhaps most natural perspective from the point of view of topology is
“irreducible closed subsets”, but we will see that it is very useful to take advantage of their
scheme structures.

For the rest of this talk, all schemes are of finite type over a fixed field k.6 We will write
An and Pn for An

k and Pn
k and X × Y for X ×k Y .

1.1.2. Definition. A cycle on X is a Z-linear combination of integral7 closed subschemes of X.
For such a subscheme Z, we will write [Z] for the associated cycle. Let Z(X) denote the
(free) Abelian group of cycles on X. It has two obvious gradings:

(a) It has a grading by dimension (the “homological grading”): Z(X) = ⊕dim(X)
i=0 Zi(X),

where Zi(X) is the group of cycles of dimension i, meaning Z-linear combinations of
integral closed subschemes of X of dimension i. Elements of Zi(X) are called i-cycles.

(b) If X is irreducible (hence, by smoothness, irreducible), Z(X) also has a well-defined
grading by codimension (the “cohomological grading”): Z(X) = ⊕dim(X)

i=0 Z i(X),
where Z i(X) := Zdim(X)−i(X). More generally, if X = X1 ⊔ · · · ⊔ Xn with each
Xi irreducible, then Z(X) = Z(X1) ⊕ · · · ⊕ Z(Xn) for obvious reasons, and we set
Z i(X) := Z i(X1) ⊕ · · · ⊕ Z i(Xn). Note that, in this case, Z i(X) need not equal Zj(X)
for any j, unless all Xi have the same dimension. Below, whenever we discuss the

6comment on generality
7Recall that “integral” is equivalent to “reduced and irreducible”.
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grading Z∗(X), we will implicitly assume that X is a disjoint union of irreducible
schemes.

1.1.3. Example. Z0(X) is freely generated by the set of connected components of X.

Cycles are defined in terms of integral closed subschemes of X, but it will be very useful
to define a cycle attached to any closed subscheme of X; this will allow us to capture
“multiplicity” information.

1.1.4. Recall. For a ring R and an R-module M , we say that M is of finite length if has a
filtration whose graded pieces are simple R-modules. In this case, lenR(M) is defined to
be the number of such graded pieces; it is well defined by the standard “Jordan–Hölder”
argument. Otherwise, we set lenR(M) := ∞.

1.1.5. Definition. Let Z be a closed subscheme of X. For each irreducible component W of
Z, let OZ,W denote the local ring at the generic point of W . Then we define

(1.1.5.1) [Z] :=
∑
W

lenOZ,W
(OZ,W ) · [W ],

where W ranges over all the (finitely many) irreducible components of Z.

1.1.6. Exercise. Complete the following to check that the definition makes sense.
(a) Let R be a Noetherian local ring. Show that if R has Krull dimension 0, then mn

R = 0.
(In fact, the converse is true too.)

(b) Let X be a locally Noetherian scheme, let Z be a closed subscheme of X, and let W

be an irreducible component of Z. Show that lenOZ,W
(OZ,W ) < ∞.

1.1.7. Remark. All coefficients appearing in (1.1.5.1) are positive, because OZ,W is nonzero.

1.2. Rational equivalence and Chow groups

Just as in the development of singular homology, we have to take a quotient to get groups
which (intrinsically) carry any nontrivial geometric meaning about X. We do this by trying
to port the notion of “homotopy” to the algebraic setting. Intuitively, if we take an algebraic
function (i.e. morphism of schemes) f : X → P1, we view f as providing a “homotopy”—a
nicely varying family—from f−1{0} to f−1{∞}. The actual definition modifies this intuition
in three ways.

• We will use Definition 1.1.5 to capture the correct multiplicities (i.e. the vanishing/pole
orders of f).

• We will take into account that f−1{0} and f−1{∞} are always of codimension 1.
• Rather than looking only at morphisms to P1, we will allow ourselves more flexibility

by working with any rational function (element of a function field).

1.2.1. Definition. Consider a pair (Z, f) consisting of an integral closed subscheme Z of X and
an element f ∈ k(Z)×, where k(Z) := OZ,Z is the function field of Z. Given an irreducible
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closed subset W of Z such that codimZ(W ) = 1, we can write f = g/h with g, h ∈ OZ,W ,
and we define the order of vanishing of (Z, f) along W to be

ordW (Z, f) := lenOZ,W
(OZ,W /g) − lenOZ,W

(OZ,W /h)

(where, as above, OZ,W denotes the local ring of Z at the generic point of W ). We then define

div(Z, f) :=
∑
W

ordW (Z, f) · [W ],

where W ranges over all irreducible closed subsets of Z.
Let ∼rat denote the subgroup of Z(X) generated by all cycles of the form div(Z, f). We

finally define the Chow group of X to be CH(X) := Z(X)/∼rat. It is clear that this quotient
respects the two gradings: CH(X) = ⊕dim(X)

i=1 CHi(X) = ⊕dim(X)
i=1 CHi(X) with obvious

notation.

1.2.2. Exercise. Complete the following to check that the definition makes sense.
(a) Let R be a domain, and let g, h ∈ R. Show that lenR(R/g) − lenR(R/h) depends only

on the element g/h of the fraction field of R.
(b) Show that ordW (Z, f) = 0 for all but finitely many W .

1.2.3. Remark. If OX,W is regular (e.g. if X is smooth), then it is a DVR, and ordW (Z, f) is
just the valuation of f .

Having defined Chow groups, we briefly study two extreme cases: CH0 and CH0.

1.2.4. Example. It is immediate from the definition that CH0(X) is still the free Abelian
group on the set of connected components of X.

1.2.5. Proposition. Assume X is proper and k is algebraically closed. Then the homomorphism
deg : Z0(X) → Z which sums the coefficients of a 0-cycle is well defined on CH0(X). In
particular, we get a (non-canonical) decomposition CH0(X) = CH0(X)deg=0 ⊕ Z.

When k is not algebraically closed, the second sentence remains true after modifying the
definition of deg to take into account the residue degree of a closed point; the last sentence
remains true under the assumption that X(k) ̸= ∅.

Proof sketch. (fill in) □

1.2.6. Example. It is easy to see that CH0(P1)deg=0 = 0.

As the following example shows, CH0(X)deg=0 can have an extremely rich structure. In some
sense, CH0 is the most complicated piece of the Chow group.

1.2.7. Example. Let E be an elliptic curve over an algebraically closed field k, with point at
infinity O ∈ E(k). The theory of elliptic curves (Silverman, Chapter III, Proposition 3.4)
shows that the map

E(k) CH0(E)deg=0

P [{P}] − [{O}]
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is an isomorphism, where E(k) is given the “chord and tangent” group law (with identity
element O). A similar statement is true for a higher-genus smooth proper curve C: We have
CH0(C)deg=0 ∼= JacC(k), where JacC is the Jacobian variety of C. These statements also
remain true when k is not assumed to be algebraically closed (see an exercise for the case of
elliptic curves). In particular, CH0(C) is usually not finitely generated for a curve C of genus
≥ 1.

1.2.8. Example. Assume k is algebraically closed, and fix x ∈ k. Then div(A1, f) = [{x}],
where f is the polynomial t − x ∈ k[t]. Thus [{x}] = 0 in CH0(A1), and so CH0(A1) = 0.
The reader should have no trouble showing that, more generally, CH0(An) = 0 for all n ≥ 1
and any field k.

On the other hand, similar phenomena does not hold for general affine schemes. For
example, one typically has CH0(E \ {O}) ̸= 0 for an elliptic curve E by Example 1.2.7 and
Exercise 1.4.1.

The examples above demonstrate major differences between rational equivalence and homotopy
(in the topological sense): We “homotoped” a point on A1 out of existence by moving it to
infinity, yet on an elliptic curve, no point cannot be “homotoped” to any other point!

1.3. Functorialities

In this section, we explain the basic ways to move cycles along a morphism. We first give the
definitions, then state the basic properties, and finally give some explanation and examples.
First is “proper pushforward”:

1.3.1. Definition. Let f : X → Y be a proper morphism. We are going to define a homo-
morphism f∗ : Z∗(X) → Z∗(Y ), where we write Z∗ to mean that it preserves the grading
by dimension. Let Z be an irreducible closed subset of X. Since f is proper, f(Z) is again
a closed subset of Y (and it is automatically irreducible). Viewing Z and f(Z) as integral
schemes, we get an extension k(Z) | k(f(Z)) of function fields of degree d := [k(Z) : k(f(Z))].
We define f∗[Z] := d · [f(Z)] if d is finite, and otherwise we set f∗[Z] := 0.

Next is “flat pullback”:

1.3.2. Definition. Let f : X → Y be a flat morphism. We are going to define a homomorphism
f ∗ : Z∗(Y ) → Z∗(X), where we write Z∗ to mean that it preserves the grading by codimension.
This is straightforward: Given an integral closed subscheme W of Y , let f−1(W ) := W ×Y X be
its scheme-theoretic preimage (whose underlying set is f−1(|W |)), and set f ∗[W ] := [f−1(W )]
(cycle defined by a subscheme, Definition 1.1.5).

Comment on why it preserves grading by dimension!

1.3.3. Fact.
(a) Proper pushforward and flat pullback are functorial in the sense that (g ◦ f)∗ = g∗ ◦ f∗

and (g ◦ f)∗ = f ∗ ◦ g∗ whenever these identities make sense.
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(b) Proper pushforward and flat pullback respect rational equivalence, i.e. induce homo-
morphisms on CH∗ and CH∗, respectively.

Proof sketch. Functoriality of proper pushforward is clear. Functoriality of flat pullback
follows immediately upon showing that f ∗[W ] = [f−1(W )] for an arbitrary subscheme W of
Y .

□

1.3.4. Example. Assume X is proper, and let f : X → Spec(k) be its structure morphism.
Then f∗ : CH0(X) → CH0(Spec(k)) ∼→ Z is just the map deg defined in Proposition 1.2.5
(and the following paragraph). Note that, if k is not algebraically closed, the formula
“f∗[Z] = [f(Z)]” does not respect rational equivalence.

1.3.5. Example. Consider the map f : P1 → P1 given on k-points by f(x) = x2. Then
f ∗[{0}] = 2 · [{0}] (check this using the definition!). Thus Definition 1.1.5 is indeed playing
an important role.

The above definitions can be näıvely generalized to get rid of the “proper”/“flat” hypotheses,
but the resulting map on cycles need not respect rational equivalence or preserve the desired
grading; we leave the reader to come up with examples. Correctly defining pullbacks in the
case of a closed embedding (the typical example of a non-flat map) turns out to be quite
difficult, and is essentially equivalent to what we will discuss in §1.5.

1.4. Two useful properties

In this section we describe two useful properties of Chow groups which roughly mimic
properties of singular homology. First is an “excision” (or “localization”) exact sequence:

1.4.1. Exercise. Let ι : Z ↪→ X is the inclusion of a closed subscheme.
(a) Show that the sequence

CHi(Z) ι∗−→ CHi(X) j∗
−→ CHi(X \ Z) → 0,

is exact for each i, where j is the inclusion X \ Z ↪→ X.
(b) Show that the exact sequence of (a) is functorial in the following sense: Given a

proper/flat morphism Y → X, proper pushforward/flat pullback induces a morphism
of exact sequences between the excision exact sequence of Z ↪→ X and that of
f−1(Z) ↪→ Y .8

Next is a “homotopy invariance” property for Chow groups.

1.4.2. Proposition. Let π : E → X be an An-bundle. That is, X is covered by open sets U

such that the map π|π−1(U) is isomorphic to pr1 : U × An → U . Then π∗ : CHi(X) → CHi(E)
is an isomorphism.

8This is a consequence of the more general compatibility between proper pushforward and flat pullback in
pullback squares. [cite]
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Proof sketch. Injectivity requires tools which have not been introduced, so we only explain
surjectivity; details are left as an exercise. Using the excision exact sequence, induction, and
the definition of rational equivalence, we reduce to showing the surjectivity of pr∗

1 : CH1(X) →
CH1(X × A1).9 Let R be the coordinate ring of X, and consider a codimension-1 closed
subset Z of X × A1, given as the vanishing locus of some height-1 prime ideal p ⊆ R[t]. If
p ∩ R ≠ 0, then Z is pulled back from X, so we assume p ∩ R = 0. Let K be the field of
fractions of R. Then pK[t] = f(t)K[t] for some f(t) = g(t)/a, where g(t) ∈ A[t] \ A and
a ∈ A. One checks that div(X × A1, f(t)) = π∗α + [Z] for some α ∈ Z1(X), which implies
surjectivity. □

1.5. Intersection product

There is an extra structure on the homology/cohomology of a topological space coming
from cap/cup product. These operations give rise to Poincaré duality. Classically, Poincaré
interpreted this duality as coming from an intersection product on simplices. We are going to
do something similar: endow CH(X) with a ring structure defined by intersecting subvarieties,
at least for sufficiently nice X. We state this as follows.

1.5.1. Fact. There exists a ring structure on CH(X) for smooth projective X, the intersection
product, with the following properties:

(a) CH(X) is a graded ring with respect to the grading by codimension, i.e.

CHi(X) · CHj(X) ⊆ CHi+j(X).

(b) If f : X → Y is a flat morphism of smooth projective varieties, the pullback map
f ∗ : CH(Y ) → CH(X) is a ring homomorphism.

(c) If f is as in (b), the projection formula (or adjunction formula) holds:

f∗(α · f ∗(β)) = f∗(α) · β.

Correctly defining the intersection product turns out to present major complications.
We have to define the intersection product [Z] · [Z ′] for any two integral closed subschemes

Z and Z ′ of X. We might hope that [Z] · [Z ′] := [Z ∩ Z ′] is a good definition, where Z ∩ Z ′

denotes the scheme-theoretic intersection Z ×X Z ′ (whose underlying set is |Z| ∩ |Z ′|). Still,
this cannot work in general, because Z and Z ′ might not be in “general position”:

1.5.2. Example. Consider two lines Z and Z ′ in P2. Typically, Z ∩ Z ′ is a single point, but in
the degenerate case Z = Z ′, the intersection is an entire line. But we know by Proposition
1.2.5 that, on P2, the class of a point can never equal the class of a line.

We see from this example that if Z and Z ′ are not in “general position”, they might have
an intersection of larger dimension than expected. Recalling that codimensions add when
intersecting two generic linear subspaces of a finite-dimensional vector space, we formulate
“general position” as follows.

9The injectivity of pr∗
1 in this case is also not difficult to prove directly, but in trying to prove injectivity

in the general case, we are thwarted by the failure of the excision exact sequence to be left-exact.



MOTIVES IN MAY 13

1.5.3. Definition. We say that integral closed subschemes Z and Z ′ of X intersect properly if
every irreducible component W of Z ∩ Z ′ satisfies codimX(W ) = codimX(Z) + codimX(Z ′).10

We might hope that if Z and Z ′ intersect properly, then [Z] · [Z ′] := [Z ∩ Z ′]. This turns out
not to be the case; however, the following facts do hold:

1.5.4. Fact. If Z and Z ′ are integral closed subschemes of X which intersect properly, then

[Z] · [Z ′] =
∑
W

nW (Z, Z ′) · [W ]

for certain integers nW (Z, Z ′) ≥ 1, the intersection multiplicities, where W runs over all
irreducible components of Z ∩ Z ′.

1.5.5. Fact. Let Z and Z ′ be integral closed subschemes of X which intersect properly.
Let W be an irreducible component of Z ∩ Z ′, and assume that Z and Z ′ are “smooth
along W” in the sense that the local rings OZ,W and OZ′,W are regular. Then nW (Z, Z ′) =
lenOZ∩Z′,W

(OZ∩Z′,W ).

See Exercise 1.7.2 for an example where one cannot use this formula for the intersection
multiplicity.

Anyway, a major piece of the proof of Fact 1.5.1 is the following “moving lemma”. It is
the reason why, in Fact 1.5.1, we only state the existence of the ring structure on CH(X) for
smooth projective X.

1.5.6. Fact. Let Z and Z ′ be any two integral closed subschemes of X. Then there exists
α ∈ Z(X) such that [Z ′] ∼rat α and Z and α intersect properly.

By “intersect properly” in this more general setting, we mean that if we write α = ∑
i ni · [Wi]

for nonzero integers ni and pairwise distinct Wi, then each Wi intersects Z properly.
Say something about Serre’s formula
Note that we do not claim that α may be taken to be of the form [Z ′′]; indeed, this need

not be possible, as [Z] · [Z ′] might “only be expressible using negative coefficients”. (Example
of Euler characteristic?)

1.6. Correspondences

In this section, all varieties will be smooth and projective. To avoid unenlightening compli-
cations, we will also assume they are connected (all definitions and results generalize in an
obvious way to disjoint unions of smooth projective varieties). For proofs of the facts in this
section, see [sta25, Sections 0B0H and 0FFZ].

The intersection product allows us to generalize the pullback and pushforward operations
to all morphisms between such varieties. The key tool is the graph of a morphism:

10In fact, one always has codimX(W ) ≤ codimX(Z) + codimX(Z ′), as predicted by linear algebra [sta25,
Lemma 0AZP].



14 JAKE HURYN AND WILLIAM C. NEWMAN

1.6.1. Definition. Let f : X → Y be a morphism of connected smooth projective varieties
over k. Since f is proper, the morphism (id, f) : X → X × Y is a closed embedding. We
define the graph of f to be the set Γf := Img(id, f). We get a cycle [Γf ] ∈ Zdim(X)(X × Y ) =
Zdim(Y )(X × Y ).

1.6.2. Definition. Let f : X → Y be a morphism of connected smooth projective varieties.
Let pr1 and pr2 denote the projection maps away from X × Y . We define

(a) f∗ : CH∗(X) → CH∗(Y ) by f∗(α) := pr2∗([Γf ] · pr∗
1(α)).

(b) f ∗ : CH∗(Y ) → CH∗(X) by f ∗(β) := pr1∗([Γf ] · pr∗
2(β)).

Here, we write CH∗ or CH∗ to mean that a map respects the grading by dimension or
codimension, respectively.

What’s going on here? Check for yourself that if f : X → Y is a map of sets, and A ⊆ X,
then f(A) = pr2(Γf ∩ pr−1

1 (A)). Likewise, if B ⊆ Y , then f−1(B) = pr1(Γf ∩ pr−1
2 (B)). So,

the formulas of Definition 1.6.2 are very natural. In fact:

1.6.3. Fact. Let f : X → Y be a morphism of connected smooth projective varieties, and let
f∗ and f ∗ be as in Definition 1.6.2.

(a) f∗ agrees with the proper pushforward. If f is flat, then f ∗ agrees with the flat pullback.
(b) f ∗ is a ring homomorphism and satisfies (g ◦ f)∗ = f ∗ ◦ g∗ whenever this makes sense.
(c) The projection/adjunction formula holds: f∗(α · f ∗(β)) = f∗(α) · β.

Note also that the morphism f is not playing a very significant role in the formulas of
Definition 1.6.2; they only depend on the cycle [Γf ]. This prompts the following definitions,
which are a key intermediary in the construction of categories of motives.

1.6.4. Definition. Let X and Y be connected smooth projective varieties. A correspondence
from X to Y is an element of Corr(X, Y ) := CH(X × Y ). Given γ ∈ Corr(X, Y ), we define

(a) γ∗ : CH(X) → CH(Y ) by γ∗(α) := pr2∗(γ · pr∗
1(α)).

(b) γ∗ : CH(Y ) → CH(X) by γ∗(β) := pr1∗(γ · pr∗
2(β)).

Correspondences are to be thought of as “generalized morphisms” (generalizing the case
γ = [Γf ]), and as such they admit an operation of composition:

Corr(Y × Z) × Corr(X × Y ) Corr(X × Z)
(δ, γ) δ ◦ γ := pr13∗(pr∗

12(γ) · pr∗
23(δ)),

where the pr’s are the projections away from X × Y × Z.

Again, the reader should check that this formula gives the correct thing when dealing with
maps of sets.

1.6.5. Fact. Composition of correspondences is associative. The class of the diagonal
[∆X ] ∈ CH(X × X) is the unit element for the operation of composition.
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1.6.6. Definition. We now define Corrk, the category of (smooth projective) correspondences
over k: Its objects are smooth projective varieties over k, and HomCorrk

(X, Y ) := Corr(X, Y ),
with composition as above.

1.6.7. Fact. There exist two functors

SmProjk → Corrk, SmProjop
k → Corrk

defined as follows: on objects, both are the identity; the first takes a morphism f : X → Y

to [Γf ] ∈ Corr(X, Y ), and the second takes f to [Γt
f ] ∈ Corr(Y, X), where Γt

f ⊆ Y × X is
the subset obtained from Γf by transporting it along the isomorphism Y × X ∼= X × Y (the
“transpose” of Γf ).

1.7. Additional exercises

1.7.1. In this exercise, we will study CH∗(Pn).
(a) Let Z ⊆ Pn be a closed subscheme. Show that [Z] ̸= 0 in CH∗(Pn). (Hint: Reduce to

the case when Z is a point, using that intersection multiplicities are always positive.)
(b) Show that

CH∗(Pn) = Z[h]/hn+1

as a ring, where h is the class of a hyperplane. Moreover, show that any codimension-i
linear subspace of Pn has class hi. (Hint: We know CH∗(An) by “homotopy invariance”,
Proposition 1.4.2.11)

1.7.2. Consider Z := V (x1, x2) ∪ V (x3, x4) ⊆ P4. Show that [Z] · h2 is not equal to
[Z ∩ V (x1 − x3, x2 − x4)], despite the fact that the latter has the appropriate dimension.

1.7.3. Say that X has the Chow–Künneth generation property (CKgP) if for all Y , the
Künneth map

CH(X) ⊗ CH(Y ) → CH(X × Y )
is an isomorphism. Note that An has the CKgP by “homotopy invariance”.

(a) Show that Pn has the CKgP.
(b) Let E be a genus-1 curve. Show that the image of CH(E) ⊗ CH(E) → CH(E × E)

does not contain the class of the diagonal, hence E does not have the CKgP. (Hint:
Use the adjunction formula.)

1.7.4. Let X be equidimensional and of positive dimension. Show that given α, β ∈ Z0(X),
there exists α′ ∈ Z0(X) such that α′ ∼rat α and |α′| ∩ |β| = ∅.

11In fact, the computation of CH∗(An) only requires the “surjectivity” part of Proposition 1.4.2.
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2. Sites
Jake, April 22. Notes by Hunter Handley.

Some motivation for the etale topology: Weil studied ζ-functions of smooth projective
varieties X over Fq, which naively is a generating function for #X(Fqn) for varying n ∈ Z≥1.

He conjectured that this is always a rational function satisfying some functional equation,
and further there is an analog of the Riemann Hypothesis about where the zeroes of this
rational function should be in C. Weil knew that these conjectures would follow in general if
we have a “sufficiently nice” cohomology theory for these types of varieties. For example,
the functional equation should correspond to Poincare duality and rationality corresponding
to the Lefschetz fixed point theorem. This project was carried out by Grothendieck and his
minions.

Given a “sufficiently nice” topological space X, we have H i
sing(X,Z), which can be computed

via sheaf cohomology of ZX . The main issue for us is that the Zariski topology, which is the
natural one to use for a scheme X, is far too coarse (consider that it is almost the cofinite
topology in the case of a curve). In fact, one would see that H i

Zar(X,ZX) = 0, ∀i ≥ 0. The
key insight of Grothendieck was that sheaves (and hence sheaf cohomology) really do not
depend much on the topological space at all, just the category of open subsets of X. Thence
instead of adding new open sets, one can replace the category of open subsets of X to simply
be a richer category. Changing this to be the category of all X-schemes is an option but in
fact too broad: the “correct” thing to use is the category of etale X-schemes.

2.0.1. Definition. Let C be a category (with fiber products) and Cov(C) be a set (technically
class) whose elements have the following form: U = {fi : Ui → X}i∈I ∈ Cov(C) is a set of
morphisms in C with the same target X ∈ C. We say Cov(C) is a Grothendieck topology, or
that (C, Cov(C)) is a site, if the following hold:

(Identity) If f : X ′ → X is an isomorphism, then {f} ∈ Cov(C),
(Composition) if {fi : Ui → X}i∈I ∈ Cov(C) and ∀i, {Uij → Ui}j∈Ji

∈ Cov(C), then {Uij →
X}i∈I,j∈Ji

∈ Cov(C),
(Restriction) if {fi : Ui → X}i∈I ∈ Cov(C) and we have any morphism [ϕ : Y → X] ∈ C, then

{Ui ×X Y → Y }i∈I ∈ Cov(C).

The following is in super-generality, which we will not need, and will simplify:

2.0.2. Definition. Let C, D be categories. A presheaf on C with values in D is a functor
Cop → D. Thence PSh(C, D) is the corresponding functor category whose functors are
natural transformations.

Further, if C is a site and D has products, then F ∈ PSh(C, D) is a sheaf if ∀{Ui →
X}i∈I ∈ Cov(C),

F(X) →
∏
i∈I

F(Ui) ⇒
∏

i,j∈I

F(Ui ×X Uj)

is an equalizer diagram in the category D. This gives a full category Sh(C, D) ⊂ PSh(C, D).
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We will generally only care about the case of D = Set. In this case, this says that given
sections si ∈ F(Ui), ∀i, then ∃s ∈ F(X) such that s|Ui

= si iff ∀i, j also si|Ui×XUj
= sj|Ui×XUj

.
Such a global section s ∈ F(X) is unique if it exists.

Here are some basic properties (left unproven!):
(a) Sheafification: “if Cov(C) is a set or close to it,” then a sheafification exists– i.e.

Sh(C, Set) ↪→ PSh(C, Set) has a left adjoint. This says if we have a presheaf F , we
have a sheaf F † with a morphism F → F † such that any morphism F → G to a sheaf
G factors through F → F †. The fact this works for sets gives that this (more or less)
helps for abelian groups, R-modules, etc.

• This implies Sh(C, D) with D = Set, Ab, ModR, . . . have limits and colimits.
• This further allows us to make sense of kernels and cokernels when we care

about modules or abelian groups.
(b) Sh(C, ModR) is an abelian category with enough injectives

• As you learned in middle school, this is necessary for nice cohomology theories.
(c) The functor Γ(U) : Sh(C, ModR) → ModR sending F 7→ F(U) is left exact and

thence allows one to define H i(U, F) := (RiΓ(U))F .

Now that we are drowning, here are some examples:
• If C is the category of open subsets of a topological space X and Cov(C) is what you

expect, we recover the usual notion of sheaves on X.

• If TopX := {category of all topological spaces with a map to X} and Covall(C) := {all
sets of morphisms with the same target}, we get a site (TopX)all, but this is a little
silly. Instead Covsurj(C) := {all jointly surjective such sets} would give (TopX)surj.
We could also do Covet(C) := {all jointly surjective local homeomorphisms}, and get
(TopX)et. Notice the difference between this and CovZar(C) := {all jointly surjective
open embeddings} giving (TopX)Zar

• Notice that Sh((TopX)all) ⊊ Sh((TopX)surj) ⊊ Sh((TopX)et) ⊊ Sh((TopX)Zar).
• Sh((TopX)all) ∼= {∗} with the identity morphism
• Sh((TopX)surj) ∼= Set.

• In general, Sh((TopX)all) ̸∼= Sh(X).
Onto etale morphisms: recall that a morphism f : X → Y of schemes is smooth if

• f is locally of finite presentation,
• f is flat, and
• ∀y ∈ Y, Xκ(y) is regular.

This is analogous to the manifold case: a map f : M → N of manifolds is smooth if
∀x ∈ M, ∃U ⊂ M, V ⊂ N open such that x ∈ U, f(U) ⊂ V, and U ∼= V × Rd for some d. A
local homeomorphism of manifolds is this with d = 0, i.e. the fibers are 0-dimensional. An
exercise is that a k-variety X is 0-dimensional iff X = ⊔

i∈I Spec(ki) where ki/k are finite
separable extensions (note that I can be an infinite index set).
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2.0.3. Definition. f : X → Y is etale iff
• f is locally of finite presentation,
• f is flat,
• and ∀y ∈ Y, Xκ(y) ∼=

⊔
i∈I Spec(ki) with ki/k finite separable.

2.0.4. Definition. Given a scheme X, we define
• the big etale site as SchX with jointly surjective etale morphisms,
• the small etale site as ÉtX with jointly surjective etale morphisms,
• the big/small Nisnevich sites by replacing “etale coverings” with {Ui → X}i∈I etale

such that ∀x ∈ X, ∃i ∈ I, u ∈ Ui such that ui 7→ x and κ(ui) = κ(x).

In the above, one must check that the composition and base change of etale morphisms
are etale. But here are some examples:

• {Speck′ → Speck} is an etale cover iff k′/k is a finite separable extension. Further, it
is Nisnevich iff [k′ : k] = 1.

• {SpecOL[1/n] → SpecOK [1/n]} where L/K are number fields is an etale cover iff
L/K is unramified outside of N.

• {A1
k \ {0} →z 7→zn A1

k \ {0}} is an etale cover iff chark ∤ n and Nisnevich iff n = 1.

• {A1\{x} → A1,A1\{0} →z 7→zn A1} with chark ∤ n, a ̸= 0 is always etale but Nisnevich
iff a1/n ∈ k.

2.0.5. Lemma. A presheaf F : ÉtSpeck → Set is a sheaf iff ∀k′′/k′ finite Galois, F(Speck′) →
F(Speck′′)Gal(k′′/k′) is an isomorphism. In particular, Sh(ÉtSpeck, Set) ∼=discrete Galk-sets,
so the Etale cohomology can be computed via group cohomology.

Proof. View F as a contravariant functor {∏
i∈I ki | ki/k} → Set. One then reduces to F is a

sheaf iff it satisfies the sheaf property for one-element covers. Then computing the equalizer
gives the points fixed under Gal(k′′/k′), since k′′ ⊗k′ k′′ ∼=

∏
σ∈Gal(k′′/k′) k′′. □
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